详细内容

从自然到仿生:超疏水材料的发展

向自然学习:其实自然界中的超疏水现象远没有你想象的那么简单

除了荷叶,自然界中还有很多植物和动物具有超疏水现象。水稻叶片上的水滴就比荷叶表面上的水滴有个性的多。不同于荷叶表面上的水滴可以向任意方向滚动,水稻的叶片上的水滴很容易沿着叶片生长的方向滚动,而在垂直的方向则较难滚动。这是因为水稻叶片具有线形定向排列的突起阵列以及一维的沟槽结构(图2 (a))。在水平于叶片生长的方向上,液滴的滚动角为3°——5°,在垂直方向,滚动角则为9°——15°。稻叶表面乳突结构的线性定向排列为液滴提供了在两个方向上浸润的不同能量壁垒。类似的还有蝴蝶的翅膀,当蝴蝶翅膀扇动时,水滴会沿着轴心放射方向滚动从而使得液滴不会沾湿蝴蝶的身体。原来蝴蝶翅膀被大量的沿着轴心放射方向定向排列的微纳米鳞片覆盖(图2 (b))。这种高度方向性的微纳米结构有效地影响了水滴的润湿表现,使得水滴可以容易地沿着放射方向滚走,同时会在相反方向嵌住。两种不同的状态可以通过控制翅膀扇动的姿势或空气通过翅膀表面的方向来调整。这种各向异性的黏附,使得蝴蝶翅膀可以在湿度环境下定向清洁,从而保证蝴蝶飞行时的稳定性并且避免灰尘的堆积。

与荷叶表面可以轻松滚动的小水滴不同,玫瑰花瓣上的小水珠却往往牢牢地粘附在其表面。通过对玫瑰花瓣的微观探索,科学家发现玫瑰花瓣表面由微米尺度的乳突组成,而在乳突的尖端则是许多纳米尺度的折叠结构,而这种纳米折叠结构正是导致玫瑰花瓣高黏附特性的关键因素(图2 (c))。气体可以存在于纳米折叠结构之中,而水则可以轻松刺入微米乳突之间。与玫瑰花瓣有异曲同工之妙的还有壁虎的脚掌。壁虎的脚掌具有超疏水、自清洁的功能,但更令科学家兴奋的是壁虎的脚掌具有超高的黏附能力使其可以在光滑的表面上自由的移动。这得益于壁虎脚掌的表面为良好排列的微米刚毛,这些刚毛的末端则为上百个更小的纳米尺度末端组成(图2 (d))。由壁虎刚毛纳米末端和固体表面接触所产生的范德瓦耳斯力则是壁虎能够在各种角度墙面爬行的支持。

蚊子复合眼睛排列有紧密的六边形小眼,而在每个小眼上都排列有紧密的六边形突(图2 (e))。这种独特的复合结构使得蚊子的复眼拥有了极强的疏水性。当蚊子暴露于雾气环境中时,可以发现在蚊子眼睛表面并不能形成极小的液滴,而在蚊子眼睛周围的绒毛上雾气凝结了大量液滴。这种极强的疏水性可以阻止雾滴在蚊子眼睛的表面附着和凝聚,从而给蚊子带来清晰的视野。这个发现为开发干性防雾表面材料提供了极具启发性的研究思路。


在线表单提交
更多
姓名
电话
留言内容
公司服务热线:
公司地址:山东省淄博市高新区柳泉路125号先进陶瓷产业创新园A座506室
13325223698
超疏水技术
天博tb综合体育
在线留言

COPYRIGHT 2014-2025    ALL RIGHTS RESERVED

工信部备案:鲁ICP备2021014568号

微发泡技术
扫一扫关注微信平台
客服中心
联系方式
13325223698
扫一扫关注微信
技术支持: 三加一信息科技 | 管理登录
seo seo
XML 地图